The Future of Satellite Search and Rescue Mid-Earth Orbiting Search and Rescue (MEOSAR)

17-18 July 2012, Washington DC

Mid-Earth Orbiting Search and Rescue (MEOSAR)

- Beginning in 2000 various studies determined that medium-earth orbiting (MEO) satellites could provide a vastly improved space-based distress alerting and locating system
- MEOSAR could address known gaps in Current Low-Earth Orbiting and Geo-Stationary SAR Systems
- NASA undertook Proof of Concept Distress Alerting Satellite System (DASS)
- Based on POC results Air Combat Command with GPS Directorate, NASA,
 NOAA, USCG, and Canadian DND are developing a operational capability on
 GPS III satellites Search and Rescue / Global Portioning System (SAR/GPS)
- Supports U.S. Policy on Space-Based Positioning, Navigation & Timing Policy –
 SAR on GPS

DASS Proof-of-Concept

- NASA led Proof-of-Concept included repeater on GPS IIR, IIR-M, and IIF SVs
 - Nine on-orbit GPS Block IIR satellites carry DASS repeaters
 - 12 Additional IIR satellites + all Block IIF satellites to host repeaters
 - POC system uses existing GPS. Downlink at S-Band (Not ITU-allocated for SAR)
 - Proof-of-Concept results to date:
 - Demonstrated ability to locate beacons to greater than current Cospas-Sarsat accuracy using two or more satellites
 - System meets/exceeds theoretical capabilities
 - Prototype ground station at NASA Goddard Space Flight Center
 - 4 antennas capable of independently tracking 4 satellites
 - Completed in 2008
 - Successfully passed acceptance testing
 - Currently undergoing Technical refresh
 - Demonstration and Evaluation phase schedule to begin 2013

Search and Rescue / Global Positioning System (SAR/GPS)

SAR/GPS provides:

- 406 MHz "bent-pipe" repeaters on GPS - Alert data downlink freely available internationally
- Full compatibility with existing and future 406 MHz beacons
- Support for civilian and military SAR responsibilities
- Low technical risk, low cost
- SAR/GPS will be fully interoperable with similar proposed Russian (SAR/GLONASS) and European (SAR/Galileo) systems

US / Canadian Joint Effort includes repeaters on GPS III Sv#9+

L-Band downlink – allocated for operational use

International MEOSAR Cooperation

Russia (SAR/GLONASS), USA (SAR/GPS) and ESA/EC (SAR/Galileo) working to include 406 MHz repeater instruments on future medium Earth altitude orbiting (MEO) GNSS satellite constellations

- Constellations will be fully compatible (72 Satellites)
- Coordinating with C-S on specifications and compatibility
- Global detection + location:
 - Beacon without embedded GPS greater than Cospas-Sarsat accuracy with 3 bursts or less
 - Self-locating beacons GPS accuracy after single beacon burst
- Return Link Capability May allow two messages
- Demonstration and Evaluation starting in 2013 (Nine DASS test satellites, 1 SAR/GLONASS, 2 SAR/Galileo)

MEO vs LEO Coverage

Hawaii and Florida MEOLUTs

6 Channel, Stand alone

MEOSAR Timelines

Conclusions

- 1st significant modernization since system inception
- Space segment provides significant on orbit redundancy
- Long term reduction of ground segment infrastructure
- System design provides for redundant ability for location
 - TDOA/FDOA
 - GPS Encoded
- Full compatibility with existing and future 406 MHz beacons
- Continue to reduce the SAR Response chain